
A Comparison of Distributed Systems:
ChorusOS and Amoeba

Angelo Bertolli
Prepared for MSIT 610 on October 27, 2004
University of Maryland University College

Adelphi, Maryland
United States of America

Abstract. Distributed systems provide a framework to take advantage of
the under used computing power of idle machines, and to attempt to
solve problems too difficult for ordinary machines. This paper will

attempt to define distributed computing and demonstrate the strengths,
weaknesses, techniques, and theories behind distributed systems. The

scope will include an introduction and discussion of distributed systems
and a look at two specific systems: ChorusOS and Amoeba.

Section 1: General Overview of Distributed Systems

Introduction
Flynn's taxonomy attempts to categorize computer systems in terms of how they use data, and
how that data is controlled or manipulated. It defines two control streams: SI (single instruction)
and MI (multiple instruction), and two data streams: SD (single data) and MD (multiple data).
Any computer system will have one type of control stream, and one type of data stream:

Control

D
at

a

Single Multiple

Single
SISD

A sequential computer

MISD
Unusual*

Multiple
SIMD

Vector Processors

Massively Parallel Processors

MIMD
Distributed Systems

* “There are few machines in this category, none that have been commercially successful or had any impact on computational
science.” [3]

The focus of this paper will be on distributed systems: those computer systems which use
multiple control streams upon multiple data streams (MIMD). [10] “The category of MIMD
machines is the most diverse of the four classifications in Flynn's taxonomy.” [3]

Distributed systems provide a large amount of computing power by distributing the work load

across smaller, less-capable machines. This means that it is less expensive to build a distributed
system than to create a new autonomous system which can do the same job. This is typically
done with a model called Message Passing in which a program is split into smaller pieces which
can pass information to each other.

Applications of distributed systems include particle physics, bioinformatics, office resource
sharing, visualization & graphics rendering, enterprise management, and embedded systems (like
your cell phone). Some issues concerning the design of distributed systems include fault
tolerance, process scheduling, and security.

Categorization
Distributed systems can be divided into two main categories: homogeneous systems and
heterogeneous systems. These categorizations are based on function within the system, and
sometimes on the types of hardware that make up the system.

Examples
Homogeneous Processor Pool: connected workstations.

 Cluster: hardware facility for fault tolerance.

Heterogeneous Client/Server: one server machine (bigger, with shared resources), and
multiple client machines (smaller).

 Network of Workstations (NOWs): similar to client/server, but with more
equal computing power—can be over either a LAN or WAN.

Distributed systems can also be categorized according to their software environments (in order
of decreasing abstraction from the user):

(1) Distributed Operating System: completely manages the hardware of multiple
individual nodes, as to appear as one meta-node.

(2) Distributed Shared Memory Systems: manages the memory and processor usage of
the different nodes.

(3) Network Operating System: individual systems with network capabilities, linked to
effectively provide a distributed system.

Speed-up and Efficiency
The critical factor in determining the usefulness of a distributed system is its speed-up or
efficiency: how much better multiple processors can solve a problem than one processor. Even
without overhead due to communication, no distributed system can run at 100% efficiency (the
speed-up is equal to the number of processors). This is because there is always a percentage of
sequential code which cannot be done parallel.

Let R represent the total run time of the program.
Let RS represent the run time of the sequential code. (RS > 0)
Let RP represent the run time of the code done in parallel (on one processor).

Therefore, our total run time will be the sum of the sequential part of the problem, and the
parallel part of the problem:

R = RS + RP

If we consider n to represent the number of processors, each processor will share the part done in
parallel. We have:

R = RS + (RP / n)
(Again, this is considering there is no loss due to overhead for communication.)

The speed-up of a system is defined as the ratio of the system with a single processor to the same
system with n processors:

S = (RS + RP) / (RS + (RP / n))

And since RS can never be zero, you cannot achieve a speed-up equal to the number of
processors. A speed-up equal to the number of processors means an efficiency of 100%.
Efficiency is defined as the speed-up divided by the number of processors:

E = S / n

Example

With an algorithm that is 20% sequential, 80% parallel, and requires 100 seconds to run
on a single processor (R), we can determine the speed-up and efficiency of using 4
processors (R4) (assuming no overhead):

R = 100 (seconds) = RS + RP

RS = 20
RP = 80
R4 = RS + (RP / n) = 20 + (80 / 4) = 40
S = R / R4 = 100 / 40 = 2.5
E = S / n = 2.5 / 4 = 0.625

In this case, our speed-up of four processors is 2.5 times more than of one processor, or
an efficiency of 62.5%

Software for Distributed Programming
There are a number of software packages which have been created to make writing programs for
distribution over many machines easier. These packages have some way of transporting data or
services among nodes in the system. Three popular packages include PVM, RPC, and CORBA.

PVM (Parallel Virtual Machine) – This software package was designed to provide a
programming environment that emulates a traditional parallel system.

RPC (Remote Procedure Call) – This software package provides procedures or functions which
can be accessed remotely. When the procedure call is made by the first node, data is sent to the
second node offering the function, the function is executed, and the results are returned to the
first node.

CORBA (Common Object Request Broker Architecture) – This software package is similar
to RPC in architecture, but instead of providing functions, CORBA provides C++ objects to
other nodes. Then the first node requests the use of an object offered by the second node, the
second node creates the instance of the object locally. All commands issued to the object by the
first node occur on the second node.

Correct Distributed Systems
It is useful to describe a system with more detail, beyond the generic term of just “distributing the
work.” Correct distributed systems (called truly distributed) are defined to have features which
not only provide enhanced security and fault tolerance, but a desired level of abstraction to the
user. They have four main characteristics:

(1) That the relevant information is going to be distributed among the nodes.

(2) That each process in the distributed system can make decisions given information which is
local to that node.

(3) There is no common point of failure. For example, in a homogeneous system, any 1/3rd of all
nodes should be able to go down without there being a noticeable difference except for
performance loss.

(4) A truly distributed system cannot rely upon a global clock to function.

One alternative to a global clock is to use the Lamport Clock Algorithm for a logical clock. A
logical clock defines the operation “happens before”, e.g. “a happens before b” A node using the
Lamport Clock Algorithm can keep track of time by attaching a send time to each message, and
increment its local clock according to the messages it received.

Section 2: Descriptions of Specific Systems

ChorusOS
Chorus is an operating system for embedded systems. An embedded system is a specialized
system that is part of a larger system or machine. Chorus is a real-time OS (RTOS) which means
that it responds immediately to input and can be used in real-time applications to solve real-time
problems.

At its heart is the Chorus nucleus (microkernel). A microkernel is an OS with only the essential
services such as interprocess communication, short-term scheduling, and memory management.
Chorus implements these simple tools and makes them distributed on the lowest level.

Chorus is designed for reliability, availability, and scalability for critical telecommunications
applications.

Background

Chorus started in 1980 as a research project at the French research institute INRIA. [7] It started
with version 0 which implemented structured processes called “actors.” In 1982, version 1
continued with multi-processor research and included structured messages and support for fault
tolerance. Version 2 came out in 1984 and was source compatible with UNIX, meaning that
UNIX programs could be recompiled and run on Chorus. In 1987, with version 3, Chorus went
commercial, becoming Chorus Systems Inc. Furthermore, version 3 implemented RPC as the
communication model.

Chorus Cool ORB 3.1 became available in 1996. This ORB is designed for distributed, real-time
application development, and is targeted at telecommunication companies. It allows companies
to create applications that run on different platforms simultaneously over a network. Chorus
Cool ORB also complies with CORBA 2.0 object specifications.

In 1998 Sun Microsystems acquired Chorus, and since then they have released Chorus 4.0.1

Chorus Microkernel

The Chorus microkernel (which they like to call the “nucleus”) has 4 major parts. The first part,
the supervisor, handles hardware interrupts, traps, and exceptions. [7] This portion must be
rewritten when it is ported to a new system. The second part, the real-time executive, manages
the processes, threads, and scheduling, along with the synchronization between threads. The
virtual memory manager takes care of the low-level part of the paging system. The inter-process
communication manager handles the UI’s (unique identifiers), ports, and sending messages in a
transparent way.

The Chorus microkernel has low-level transparent connectivity services that let you distribute
functions across multiple PCs. When one fails, you can automatically off-load to another. The
size of the Chorus microkernel is about 50 to 60 Kb.

Processes

There are 3 kinds of processes which interact with each other and the nucleus to get jobs done.
Starting with the lowest level, the processes are kernel, system, and user. Kernel processes reside
in kernel space along with the nucleus. System and user processes reside in user space.

 Kernel processes are trusted and privileged, able to make demands on the nucleus and
implement their own hardware functions. Kernel processes complete the necessary

requirements for a basic operating system, and provide things such as file managers, stream
and sock managers, device drivers, etc. However, these processes are only loaded as needed
and can be removed or added during system execution. The relationship between kernel
processes and the nucleus provide a way to extend and configure the functionality of the OS.

 System processes are trusted, able to send requests to kernel processes and to the nucleus
itself. A subsystem consists of a collection of system processes that work together, eg. the
UNIX subsystem known as MiX allows binary compatibility with UNIX. [7]

 User processes are neither trusted or privileged. They may only ask something of the nucleus
or kernel through a subsystem. No direct calls are allowed.

 Real-time processes can run as system processes to reduce overhead.

Amoeba
The Amoeba operating system is designed to run on multiple machines across a network which
appears to each user as a single shared machine. [9] It is a heterogeneous distributed operating
system designed for general-purpose computing. “It is designed to take a collection of machines
and make them act together as a single integrated system.” [8] Details about where processes are
run or files are being stored are hidden to the user. Amoeba can be used both as a distributed
system for multiple users with multiple tasks, or a parallel system for a single difficult job.

Background

There was an explosion in personal computing in the 1980's when computers became affordable
enough for each user to have a workstation. Around this time, a group at the Vrije Universiteit
(VU) in Amsterdam started working on the problem of using multiple individual user systems in
distributed and parallel ways.

System Design

The design goals for the Amoeba operating system included distribution, parallelism,
transparency, and performance:

Distribution – Amoeba is a heterogeneous system which can be built on a LAN.

Parallelism – Amoeba can use multiple processors for a single job to decrease the total run time
for the job.

Transparency – Amoeba hides details about how the resources of the various machines are
handled from the user.

Performance – Amoeba uses an optimized communication system to reduce the overhead
associated with distributed and parallel computing.

Amoeba also uses a microkernel architecture in which a copy runs on each node in the system.
This kernel supports only the basics needed locally for that system such as minimal process and
communication primitives, memory management, and raw device I/O. Server processes which
run on top of the microkernel are usually in user space.

The main communication mechanism for Amoeba is remote procedure call (RPC). This is also
hidden from the user in the Amoeba Interface Language (AIL) which provides functions and
procedures that handle the details of communication.

Filesystem

Amoeba has dedicated file servers called Bullet servers. These servers store only the file data
and not the names or hierarchy of the filesystem. “When a user program needs a file, it will
request that the Bullet server send it the entire file in a single RPC.” [8] This means that a file
server must have at least 16 MB of RAM, and the amount of physical memory limits the
maximum file size. Directories and file names are handled by separate directory servers.

TCP/IP

Amoeba doesn't use TCP/IP for it's internal communication. However, an Amoeba system can
contain a special server to provide TCP/IP communication to other systems.

“Amoeba is available for free to universities and other educational institutions and for special commercial prices and
conditions to corporate, government, and other users.” [8]

Section 3: Comparisons and Conclusions

Amoeba was designed to be used on multiple CPU's connected by a LAN, whereas Chorus was
designed to provide distributed services and architecture for embedded systems. Chorus started
out far from UNIX, but has increasingly become closer and closer to UNIX. While Amoeba is
designed to abstract or hide the multiple machines from users, Chorus was designed with the idea
that users would not only be logging into a particular machine but would be doing most of their
work on that machine.

Item Amoeba Chorus
Designed for: Distributed system 1 CPU, multiprocessor
Automatic load balancing? Yes No
Threads managed by: Kernel Kernel
Transparent heterogeneity? Yes No
Multiprocessor support? Minimal Moderate
UNIX emulation Source Binary
UNIX compatibility POSIX (partial) System V
Automatic file replication? Yes No

This is a partial chart from [8] p517: Fig. 9-28. A comparison of Amoeba, Mach, and Chorus

References

1. Abrossimov, Armand, Boule, Gien, Guillemont, Herrman, Kaiser, Langlois, Leonard, and
Neuhauser. Overview of the Chorus Distributed Operating System.
http://www.cs.berkeley.edu/~gribble/osprelims/summaries/Chorus.html.

2. Borzo, Jeannette. “Chorus System ships real-time application development ORB for telcos.”
InfoWorld. August 26, 1996: p52

3. Computational Science Education Project. Computer Architecture. Copyright © 1991, 1992,
1993, 1994, 1995. http://csep1.phy.ornl.gov/ca/ca.html: Section 3.1

4. Foley, Mary Jo. “SCO, Chorus prep microkernel Unix for real-time apps.” PC Week.
December 6, 1993: p65

5. Podesta, Karl. Distributed Systems (A very basic introduction of real world examples).
http://www.computing.dcu.ie/~kpodesta/distributed/.

6. Pountain, Dick. “The Chorus Microkernel.” Byte. January 1994: p131-132
7. Tanenbaum, Andrew S. Distributed Operating Systems. Upper Saddle River, NJ: Prentice

Hall, 1995.
8. Tenenbaum, Andrew S., and Sharp, Gregory J. The Amoeba Distributed Operating System.

Vrije Universiteit, De Boeleaan 1081a, Amsterdam, The Netherlands.
9. Wikipedia, the free encyclopedia. Amoeba distributed operating system.

http://en.wikipedia.org/wiki/Amoeba_distributed_operating_system
10.Wikipedia, the free encyclopedia. Flynn's taxonomy.

http://en.wikipedia.org/wiki/Flynn's_taxonomy
11.Williams, Tom. “Sun Microsystems maps its embedded systems strategy with Java.”

Electronic Design. January 26, 1998: p90
12.

